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DETERMINATION OF THE SHAPE OF THE EARTH'S

PHYSICAL SURFACE FROM THE ANOMALIES OF THE

VERTICAL GRADIENT OF GRAVITATIONAL ACCELERATION

S. V. Gromov

The classical dynamic method of determining the shape of / 26*

the geoid proposed by Stokes in 1849 [8], was based on the use

of the values of the first (vertical) derivative of the potential

W of gravitational acceleration at the points of the surface

being determined. M. S. Molodebtskiyl [4] solved the problem of

determining the shape of the physical surface of the Earth. This

solution is also based on the distribution of the anomalies of

gravity at points of the surface being determined. Along with

great theoretical value, it is extremely important in practical

terms since at the present time of all the derivatives of the

potentiallW = const, we can best measure the first vertical

derivatives (g).

However, there is still interest in the methods for determining

the shape of the Earth which use other derivatives of W, whose

mass measurement is not reliable at the given time, or has insuf-

ficient accuracy. In 1949, N. K. Migal' [2] provided a rigorous

solution for the problem of determining the shape of the level

surface of the gravity potential by means of the sum of the main

radii of curvature of the latter. The values for the main radii

* Numbers in the margin indicate pagination of original

foreign text.
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of curvature for the surface W = const may be obtained at each

point by means of the gravitational acceleration (g) and the

derivatives { V d I , as well as by the second

vertical derivative of the gravity potential z  or, as it is

frequently called, the vertical gradient p of the force of

gravity. In practice, this solution is of little value, since

insurmountable difficulties are encountered when reducing the

measured derivatives from the physical surface of the Earth to

the level surface in the field of the real Earth. In addition,

to obtain the necessary data it is necessary to make complex

measurements at each point with different devices of at least

3 types: a gravimeter (g), a gravitational variometer( ... -,

and a vertical gradient meter () . The last device is

still in a stage of development. In 1966 I. F. Monin [6]

solved the problem of determining the shape of the physical sur-

face of the Earth S by means of the derivative of the mixed

anomaly of gravity (g - y) in the direction of the normal

to the level ellipsoid (normal earth). This derivative is not

purely a physical quantity (y is the gravitational acceleration

in an imaginary gravitational field) and cannot be obtained by

performing measurements with any equipment. In another article

I. F. Monin showed that this derivative equals /27

\p- " (1.0)

where Ap is the mixed anomaly of the vertical gradient of gravity,

p - radius vector of the corresponding point on the auxiliary

surface. It is true that the Equation (1.0) for the derivative

being discussed is insufficiently accurate, since its author did

not make a distinction between the direction of the normal to a

level ellipsoid and a perpendicular line. For points on the

physical surface of the Earth, in individual cases, this difference

may be substantial 1i', and the error in (1.0) may be on the order
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of 0.1E, which exceeds by several factors the required accuracy

for the measurement of the vertical gravitational gradient. There-

fore the solution given by I. F. Monin [6] requires, for even an

approximate realization, a change in two different physical

quantities at points on the surface of the Earth: the force of

gravity and its vertical gradient. In this same work [61 I. F.

Monin, using the Stokes-Molodebtskiyboundary condition, excluded

the gravitational anomaly from (1.0). He obtained an approximate

boundary condition, connecting the perturbing potential and

Ap. The external boundary value problem of potential theory is

solved with this approximate boundary condition. The solution

is reduced to solving a series of integral equations of the first

kind.

Somewhat before the studies of I. F. Monin, a work was

published [1] in which a solution was given for the problem of

determining the geoid shape by means of the anomaly Ap of the

vertical gravitational gradient. We shall attempt to solve a

similar problem with respect to determining the shape of the

physical surface of the Earth. Since the boundary condition in

the Stokes-Molodebtskiy solution is obtained in an approximate

form, we shall not use it as the initial condition when obtaining

the boundary condition in our problem. In our boundary condition,

we shall omit these values, since it is necessary to differentiate

the approximate expressions.

1. Boundary Condition for the Perturbing Potential

Let us assume the point A is close to the physical surface of

the Earth S, outside of it (see the figure). Let us examine

3 directions at A: z -the direction of the outer normal to the

surface W = Wo, passing through A; n- direction of the outer

normal from A to the level ellipsoid of rotation Eo; the direction

5 of the outer normal to the level surface U = U'o passing through
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A. The level ellipsoid Eo is oriented in the field of the Earth

in an absolute manner. The angular rotational velocities of the

Earth and the ellipsoid Eo are assumed to be equal, and the

rotational axes are assumed to coincide. In this case the perturbing

potential T=W-U where U- is the normal potential.l The effect of

rotation of the Earth and the ellipsoid E from T will be excluded,

and T is a harmonic function outside of S and Eo and is regular

at infinity. The dimensions and forms of the surface Eo are

selected so that it is sufficiently close to the geoid surface.

It is assumed that the point A is the origin of three systems

of rectangular coordinates: m, q, n; x, y, z and 5, n, ?. The

axes m, x, E are selected in the planes of the meridians of the

locations (northerly direction) corresponding to the normals

n, z, E; the axes q. y. n go in an easterly direction. /28

We can determine the position of any point in space in any

of the three coordinate systems, and there are several relations

between the coordinates, for example:

4 Bi v~Z. ( I.Urr +p bsy +cz,

where , , are the direction cosines, i = 1,2,3. The

potential W of the gravity of the real Earth may be written in

the form W (x, y,)

t. I I (X, I. 2), (r, 4". 7)l if r1T X, Z), 4 1I z.,rn .,i (1.3)

Differentiating (1.3) with respect to z, and taking (1.1)

and (1.2) into account, we obtain

+, ,,r ,r ,U (1.4)
, + 37 +t T - + '



Differentiating (1.4) again with respect to z, we may write

022 --- BVi I ' ,1 +

+Y _+ ' 't+' ~4 j Ii.

The components in the right wide of (1.5) have differing values,

some of which may be omitted in general. The angles 0, 0' between

the axes z and C and also z and n at points on the surface of the

Earth and immediately adjacent to it can reach values of 1'; the

angle ; between the axes C and n equals the correction for

curvature of the forcel line in a normal field. It is in all

1.5" for maximum altitudes above the Earth. The second derivitives

at A in (1.5) had the following values: - -- .; - - 8L,

-. -- 1500E;

(-.- as u)E,-- (Eotvos)

The derivatives .-,- :I can assume values

reaching 100 - 200 and more E5tv6s. Taking the fact into account

that a r 1 4O as .. 4 G - , and the remaining sines arel

on the order of 4 , we may write the following at the point A:

St(1.6)

and the error in this equation is less than 0.005 E. Completing

the errors -. 1,10- ': , we may write

COT _ 8f'I d5
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Approximate distribution of certain surfaces and normals to them

at the point A.

Assuming that 04T+ s-+,- - , we may write

r -r. (1.7)

/29
After setting[ A at As, with the same accuracy we obtain

(1.8)

however,

(1.9)

where N is the anomaly of altitude or the altitude of the

quasigeoid above the ellipsoid E with a neglibly small error,
0

in (1.9) we can replace ,,- by the normal vertical gravitational

gradient . We can express N in terms of the Burns formula

[3] and after substituting in (1.8) we obtain

j (1.10)

where " - -is the mixed anomaly of the vertical

gradient of gravitational accelerationY - normal value of
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gravitational acceleration at the point A . Assuming the error

in (1.10) is no more than 0.0005E, we can replace -- 1- by

We assume that a sphere with a certain radius R is the reference

surface Eo .  In this case, instead of (1.10) we obtain the

equation

O =p+ 6(deP _ (1.11)

where p is the distance measured from the center of the reference

sphere. Since the physical surface of the Earth is not known, in

the first approximation we can assume that condition (1.11) per-

tains to an auxiliary surface E [31, obtained by plotting the

normal altitudes from Eo . We thus find that it is necessary to

have a solution of the outer boundary value problem of potential

theory with the boundary condition

2 - 2. =Ap +(U V (1.12)

2. Basic Integral Equation

The direction cosines yl and Y2 are also projections of the1

angle between the axes n and z and the plane nAm and nAq. Finding

the error, which equals the correction for curvature of the

force line in a normal field (no more than 1.5")',we may write

I or I dT

After this, the boundary condition (2.12) assumes the form

oo -- PT +  -' (2.1)

7 y on, dm.A de dedp

with 8-Ap+ 61 - . The outer form of the boundary condition

(2.1) indicates the difficulty of solving the problem of deter-

mining the potential T. It is true that the solution can be
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simplified by the fact that the third term in the right side ofI

(2.1) is small and barely reaches 0.2 - 0.3 E. In level / 30
regions, when there are no sharp density jumps in the mass of
the Earth's core, it can be disregarded in general. Therefore, we

have the following way to solve the problem: in the first approxi-

mation, we solve the boundary value problem, neglecting the

third term in (2.1). Finding the potential T in the first

approximation, we determine -,- I'T .1- , and substitute

them in (2.1). After transferring these terms to the right side

ofl(2.1), we again obtain a condition of the following form

17f i (2.2)

It must be assumed that it is not necessary to go beyond the

second approximation. Actual calculations with observational

data can give an accurate answer to this question. We must now

solve the outer boundary value problem of potential theory with

the simpler boundary condition (2.2). For this purpose, we

represent the harmonic function outside of Z, which is regular

at infinity p iL 171 , in the form of the potential of a simple

layer of a certain density p distributed on the surface of the

Earth Z of the first approximation, i.e., we may write

or f
P W(2.3)

where ' -pp'- _p'-. og , p'- is the radius vector of a point

on E, p - radius vector of a fixed point Z, at which the value

of the potential T is determined, i - angle between p and p'.

Dividing (2.3) by p and integrating both parts of the equation

over p from p to infinity, I. F. Monin [5] obtained

-T pLd. , where !L (2.4)

We obtain the following from (2.3)
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z r

After substituting(2.4 ) and (2.5) in the boundary condition (2.2)

and changing to the surface E, utilizing the formula of Plemel,

we obtain

where a is the angle between p and the normal to the surface of

the earth. Assuming that the error is several tens of E6tv6s, we

may write

6 p -,&,I!

The integral Equation (2.6) with respect to the density of

the simple layer p will be solved by the small parameter method

[31. For this purpose, we introduce the new auxiliary density X

of a simple layer determined by equation -- -pc~ sau. Then the

perturbing potential may be represented in a form

--T S LP'd**. (2.7)

where do) is an elementary solid angle. Equation (2.6) may be

written as follows:

P (2.8)

where F =6L.- . To solve the integral equation / 31
(2.8), we assume another boundary surface , for which the

radius vector pe R - kll.where 0 . We shall assume that

the anomalies . are given, and we obtain a certain different

auxiliary potential T. According to (2.7)

7 . , ,,, ( ) 9



where ' is the new density of the single layer which must

satisfy the integral equation, similar to (2.8), that is

equation

SXF,,'d i. (2.9)

r 2

Since t kt1al31, when a< 4.5 for all k within the limits estab-

lished previously wc= k-- ted ig' p

-'x H -

. ' i are the normal altitudes of running and fixed

points, rl-- distance between the points on the basic sphere

corresponding to the running and fixed points, Z. The perturbing]

potential T and the density X may be represented by the series

T (2.10)

where X,, T, are the functions which do not depend on k and which

are still unknown to us. Finding , , , we readily obtain i ,

since where k I changes into Z and T, change into 7 z ,
respectively. The integral equation (2.9) thus changes into

(2.8) The perturbing potential T exists, just like the density X,

i.e., the series (2.10) converge when k = 1. When 0- k ' they

converge absolutely, and they can be treated as finite sums.

Representing L in the form of L , and substituting (2.10)

in (*), we obtain

- t4"TJ( 4)( k"L.L)(R + kH'), &. (2.11)
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In (2.11), equating the coefficients for equal powers of k, we

obtain the following system of equations

- To R% zl.L dt;

-T .(XL.',L. i X,.Lo)d~, n (2.12)

In these expressions, beginning with Ti, small terms on the order

of T.(-) and higher are omitted.

As follows from (2.12) to determine the values of Tn, it is

necessary to find the value of Xn. This may be obtained by solv-

ing the integral equations, which we are now attempting to do. / 32

Equation (2.9) may be written in the form

SA' R .-

" i l .' ' I /' P! .

Equating the coefficients for equal powers of k, we obtain

a series of integral equations of the second kind with one and the

same kernel F1 and small terms on the order of X,-2 and

higher are omitted. We thus have

--.- , n(O. 1,2 • (2.13)

(HH')()detc

11
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We shall search for the solution of the integral Equation (2.13)

in the form I , , where (X,,), is a spherical function

of the mth order. As a result we obtain

R b

V (m + 1) (2m + 1)$where C(m+i1)(ml) Pos)1 and P.,(csf! ) is thewhere 4) 1 - 1)(m -

Legendre polynomial of power m; (X,),) is still arbitrary. In

closed form o p can be written as follows

397 237 134 147

2 5 COS. 2 2()49sin cos-- sin cos

49sin cos q; + 147 sin cos" 3
co-in -

2

-I csl I sin Is i 147
.... s -2 - sin: - - (3 cos--5 cos3 )n 1 -

Lo - In n(I +--; Fo:=6Lo --
I 2r,

oy t

L x ; F1 = 6L- r Ix
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3. Calculation of the Correction Factor in the Basic Boundary

Condition

To calculate the small term in (2.1)

it is necessary to know the perturbing potential and its derivatives

in approximate form. If we assume the main term T0 in its expansion

is the approximate value of the potential, then to calculate To

it is not necessary to solve the integral equations, since the

expression To in terms of Ap was already found previously [1].

Solving the problem on determining the shape of the geoid, we

obtain the boundary condition on the sphere for determining the

perturbing potential. If it is not necessary that the masses of

the geoid and the level ellipsoid be equal and if we assume that

the centers of the masses coincide, we obtain

To. - API 2(.1 .do. - (U--". (3.0)

Outside of a sphere of a radius R

We thus have the following at points of-the basic sphere

p "- A p r(q 'I (do3s (31)

where ToV )= . Differentiating (3.1) with respect to m

and q, after changing the order of differentiation, we obtain

) - . Ap _.2 r C., fo,

. .. -s& d (3.2)

R2T L ,, - A A sin ado.
o (3.3)
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Here P and X are the altitude and/longitude of points on the

sphere a , and a is its azimuth. We obtain the following from

(3.0)

=- . Ap W cos ud,

Od Ap Q sin zd., * = 4 A, p s
R (3.5)

Thus, everything necessary for calculating the correction coeffi-

cient in (2.1) is given by the formulas (3.2), (3.3), (3.4) and

(3.5).

The results obtained in [1] make it possible to simplify

somewhat the solution of the basic problem of this study. If we

assume H = H' = 0, then the boundary condition (2.2) will be

given at points on the surface of a sphere with the radius R,

and we obtain only one integral equation I- F .F,/3d,

The solution of the boundary value problem will be R . x /"

according to (2.7) and.we have already obtained the solution

previously in the form -- bp U4, 1-- do+X,.. It is true that

the harmonics of the zero and irst orders were absent and here we

retain them. In this way we do not need to assume that the masses

of the earth and the ellipsoid, are equal, or that the centers

of masses of both bodies coincide. We thus have

RLe  -XLdw-- -,, 401 a -o" X,. (3.6)

AssumingBP..,in the boundary condition instead of !p 6p, , on the

basis of the preceding considerations we obtain

xL.dw- Sp, I0 ' ,&-f ,i etc. (3.7)
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Since T T, T,, .... , according to (2.12), (3.4), (3.7), we may

find

'4cWe - 4 4 (3.8)
T'!

Y1 is an arbitrary spherical function of the first order. The

formula (3.8) solves the problem posed.
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